Homework 4 (Graded)

Published \square

Due Wednesday $7 / 10$
S4.1: Suppose I flip a coin with heads probability p repeatedly, stopping when I reach k tails. What is the expected number of flips I will make? (Hint: use a familiar discrete distribution, whose expectation is given in ASV, and linearity of expectation.)

S4.2: Let $f_{X}(x)=c \frac{1}{\left(1+\left(\frac{x}{\sigma}\right)^{2}\right)}$. Calculate c and $\mathrm{E}[\mathrm{X}]$. You may evaluate integrals with a computer, but show where you have done so.

S4.3: Suppose the random variable X is always positive (its density on the negative numbers is zero).
Prove that $E[X]=\int_{0}^{\infty}\left(1-F_{X}(x)\right) d x$.

Points	6
Submitting	on paper

Due	For	Available from	Until
-	Everyone	-	-

[^0]
[^0]: + Rubric

